Sunday, February 10, 2013

Why scientists should play games

I have just finished reading Jane McGonigal's book Reality is Broken: Why games make us better and how they can change the world. It is a fascinating book which presents a strong case for games (including video games) doing good in the world.

Reality is Broken by Jane McGonigal

I have to admit, part of me wanted to read this book to make me feel better about my own video game habit. It certainly helped solidify the vague ideas I had about what good they might be doing me.

Specifically, the book made me think that scientists of all people might benefit greatly from playing games. There is one major reason why:

Games make you more resistant to failure

If there is one thing that scientists need to persist in their research its resilience in the face of failure. If you didn't know this already, just start following some 'life in academia' bloggers on twitter. Failure is a staple of scientific life.

Just yesterday I awoke to a small grant rejection. I started thinking about just how many things I had applied for during my (still new) scientific career, and just what proportion of those applications had resulted in rejections. I tallied it up on a chart (similar to a failure C.V.), and discovered that for about every 3.5 things I have applied for, only one was successful. This includes grant applications, travel fellowships, paper submissions and re-submissions, and miscellaneous things like applying to be an SfN Neuroblogger. (I did not include abstract submissions or applications to graduate school.) I actually think this is a relatively good ratio, and I expect this ratio to get worse in the future, because the competition for the things I am applying for will be even tougher.

Part of the reason I wanted to calculate my success/attempt ratio was to see how many things I had actually applied for. I was glad that the list was long, and that I applied for lots of things, even if it means that my 'ratio' is the worse for it. I would posit that having a good success/attempt ratio is not really that great if you only ever apply for a few things that are easy to get.

In science, you will fail; there is absolutely no scientist EVER who hasn't been rejected from something.

So back to games. Reality is Broken explains that games teach you to persist in the face of failure, and that games increase your optimism.

"Learning to stay urgently optimistic in the face of failure is an important emotional strength that we can learn in games and apply to our real lives. When we're energized by failure, we develop emotional stamina. And emotional stamina makes it possible for us to hang on longer, to do much harder work, and to tackle more complex challenges. We need this kind of optimism in order to thrive as human beings." -Reality is Broken, chapter 4

When I think of my own resistance to failure (which is decent, but could be better), I think of my time spent learning from games that failure is not the end of the world. Ever since I repeatedly failed to jump Mario over the first Goomba, video games were teaching me to try again, and again, and again.

Mario and Goomba level 1. (source)
Jane McGonigal brings up Tetris, one of the most popular video games of all time. Tetris is a game with no possible outcome except failure. You keep playing until you lose, and yet the game is immensely fun and ultimately rewarding. Each time you fail you want to try again, and you feel that you will probably do better next time.

In summary, games reward persistence and desensitize you to failure. When you play video games you learn implicitly that trying again is worth it and that failing isn't the end of the world. These skills are great to have in life and are essential to have in an academic career.

Reality is Broken lists 13 other ways that games 'fix' reality. Some of these fixes are about personal betterment (like persistence in the face of failure), but some of these fixes are about how games can ultimately change the larger reality. Games that combat global warming, for example, or games like Fold-It that actually further scientific progress and human knowledge. Whether you already play games or not, you can get something out of this book.

A nice addition to this book is the appendix "Practical advice for gamers" in which Jane McGonigal lays out some guidelines for getting the most out of games. For example, one rule is to never play more that 21 hours in a week. While video games have benefits, there are problems that can result from compulsive video game play, and you shouldn't think think that you are doing something healthy if you play video games for 50 hours a week and completely ignore reality. The idea is that playing games can help you function in reality. If you never venture into reality, you won't make any use of the benefits that the game might have given you.

© TheCellularScale

Here are further reviews of Reality is Broken:
Ferguson, C. (2011). Reality is broken, and the video game research field along with it. PsycCRITIQUES, 56 (48) DOI: 10.1037/a0026131
Farhangi, S. (2012). Reality is broken to be rebuilt: how a gamer’s mindset can show science educators new ways of contribution to science and world? Cultural Studies of Science Education, 7 (4), 1037-1044 DOI: 10.1007/s11422-012-9426-y


  1. That was before they started making video games so easy that they can be solved immediately or you don't have any penalty for failing at all. The book with all the solutions is included in the box.

    The good old days, when gaming was 'a pain', are over.

  2. It certainly helped solidify the vague ideas Kizi I had about what good they might be doing me.