Thursday, November 29, 2012

Growing 3D Cells

Neurons don't grow in a vacuum. They have white fibers, other neurons, blood vessels and all sorts of other obstacles to grow around.

Some NeuroArt (source)

A recent paper from France details the making of a 3D environment that can facilitate 'realistic' neural growth. Labour et al. (2012) created a collagen biomimetic matrix which contains neural growth factor (NGF). 

Labour et al., (2012) Figure 3
These scanning electron microscope images show the porous fibril texture of the collagen matrix. Most of the paper is spent explaining the methods for making this biomimetic matrix, but they also actually grow some pseudo-neurons (PC-12 cells) on the matrix.

They show that when cultured on top of this collagen surface, the cells extend neurons in three dimensions into the matrices and are affected by the NGF. (when there is no NGF, the neurites don't grow and the cells die.)

This paper is mostly about the methods, but I like the new possibilities that growing 3D cells opens up. With these biomimetic collagen matrices, the factors that cause specific dendritic arborizations in three dimensions can be analyzed. The environment can be completely controlled and the neurons easily visualized during growth. The authors suggest using these matrices to study neurodegeneration as well.

Another interesting thing this paper introduced me to is the 'graphical abstract.' I didn't know that that was a thing, but it seems like a good idea. However, trying to summarize an entire paper in one figure seems pretty difficult. Here is their attempt:

Labour et al. (2012) graphical abstract
I think it does actually get the feel of the paper across pretty well, though it's not really informative without the actual abstract next to it.

© TheCellularScale

ResearchBlogging.orgLabour MN, Banc A, Tourrette A, Cunin F, Verdier JM, Devoisselle JM, Marcilhac A, & Belamie E (2012). Thick collagen-based 3D matrices including growth factors to induce neurite outgrowth. Acta biomaterialia, 8 (9), 3302-12 PMID: 22617741

1 comment:

  1. I've blogged about "graphical abstracts" here: